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The temporal development of two-dimensional viscous incompressible flow induced
by an impulsively started circular cylinder which performs time-dependent rotational
oscillations about its axis and translates at right angles to this axis is investigated.
The investigation is based on the solutions of the unsteady Navier–Stokes equations.
A series expansion for small times is developed. The Navier–Stokes equations are
also integrated by a spectral–finite difference method for moderate values of time
for both moderate and high Reynolds numbers. The numerical method is checked
with the results of the analytical solution. The effects of the Reynolds number and
of the forcing Strouhal number S on the laminar asymmetric flow structure in the
near-wake region are studied. The lift and drag coefficients are also extracted from
numerical results. An interesting phenomenon has been observed both in the flow
patterns and in the behaviour of drag coefficients for S = π/2 at Reynolds number
R = 500 and is discussed. For comparison purposes the start-up flow is determined
numerically at a low Reynolds number and is found to be in good agreement with
previous experimental predictions.

1. Introduction
The unsteady flow past an oscillating circular cylinder has long been of interest

and has been reported in numerous works. The main interests in oscillating flows
are due to the possibility of controlling and modifying the wake by means of
mechanical excitations and the process of force generation due to vortex shedding.
Many properties and applications of the oscillatory flows are reported in review
articles by Berger & Willie (1972), Bearman (1984) and Griffin & Hall (1991) and
also in a recent book by Sümer & Fredsøe (1997).

Much of the prior work has dealt with the case of a steadily rotating (no forced
oscillations) and translating circular cylinder (see for example Badr & Dennis 1985;
Badr et al. 1986, 1990; Coutanceau & Menard 1985; Chang & Chern 1991; Chen,
Ou & Pearlstein 1993; Nair, Sengupta & Chauhan 1998). The work by Badr et al.
(1990) is a joint theoretical and experimental study in the Reynolds number range
103 6 R 6 104 and for rotational to translational surface speed ratios between 0.5 and
3. Their theoretical results are based on numerical solutions of the two-dimensional
Navier–Stokes equations for incompressible fluids. In their experimental study, the
flow is generally two-dimensional except for the highest rotational rate of the cylinder,
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where the flow starts to develop three-dimensional and turbulent effects which appear
at later times. In such cases, Badr et al. report that it is still possible to identify many
common features of the experimental and calculated flows, particularly up to the time
for which the flow continues to be laminar, and even beyond in some flow regions.

This present paper gives results for the laminar two-dimensional flow generated by
an infinitely long circular cylinder. Initially the cylinder is at rest, and then suddenly
starts to move with constant velocity at right angles to its axis and at the same time
starts to perform time-dependent rotational oscillations about its axis. It is noted
that purely two-dimensional shedding cannot be achieved in practice due to the end
conditions. The three-dimensional transition of the near wake of a circular cylinder
was investigated by Williamson (1988). In his experimental work three-dimensional
structures in the wake are observed when R > 178. Although physically the wake is
three-dimensional, we believe, as is supported by the agreement between calculated
results and experimental data, that it can be reasonably well represented by the
present two-dimensional model.

From the standpoint of controlling laminar two-dimensional vortex shedding from
a circular cylinder by using ‘active control’, the nature of the vortex shedding process
can be significantly altered by cylinder rotation. Generally speaking, the control of
flow physics and near-wake structure of a bluff body may take the form of global
control, where the entire body is subjected to prescribed motion, or local control,
involving localized application of unsteady blowing/suction or heating at specified
positions on the surface of the stationary body. Attention here is focused on the
case of global control where the time-dependent rotational oscillatory velocity of a
circular cylinder is represented by α∗(τ) = α0 sin (ωτ). Here α0 is the maximum angular
velocity about the cylinder axis and ω = 2πF is the angular frequency of oscillation,
where F is the frequency of oscillation.

For a translating circular cylinder under rotational oscillations the flow field
depends mainly on three dimensionless parameters. The first is the Reynolds number,
defined as R = 2aU/ν, where U is the constant speed of translation of the cylinder, a
is the radius of the cylinder and ν is the coefficient of kinematic viscosity of the fluid.
The second is the forcing Strouhal number S ,defined as S = aω/U (i.e. S = 2πaF/U
or S = 2πf) which characterizes the forced oscillation frequency. The third is the
dimensionless peak rotation rate αm = α0/U. It is noted that the dimensionless time
t is related to the dimensional time τ through t = Uτ/a and the dimensionless oscil-
latory velocity can be expressed in terms of dimensionless parameters by the relation
α(t) = αm sin (St) or α(t) = αm sin (2πft).

If a fluid is in relative motion past a bluff cylinder which is forced to vibrate over a
range of frequencies near the Kármán vortex-shedding frequency, then resonant flow-
induced oscillations of the cylinder occur, i.e. there is a lock-on or synchronization
phenomenon, f/f0 ∼ 1, where f0 is the Kármán vortex-shedding frequency for the
flow past the cylinder without oscillation. In the present study f0 is normalized with
the constant speed of the cylinder translation U and the cylinder radius a; it varies
with R and remains practically constant (namely, at the value of 0.1) for R > 300. It
may be noted that f/f0 = S/(0.2π). In a recent numerical work by Steggel & Rockliff
(1997), a hybrid discrete vortex method was used to discuss the effects of body
shape on the lock-on characteristics in oscillatory flows over rectangular-sectioned
cylinders. For unsteady flow two lock-on regimes were identified, with symmetric
shedding occurring for longer rectangles and sufficiently high oscillation amplitudes
and frequencies.

Relatively few studies have been carried out on problems concerning the effect
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of time-dependent rotational oscillations on vortex-shedding processes and on the
hydrodynamic forces. Experimental work of Taneda (1978) for 30 6 R 6 300 demon-
strates how the wake of the two-dimensional steady flow past a circular cylinder can
be substantially modified by high values of the control parameters. In fact, the flow
visualizations indicated that for the cases of R = 40 and 23π < S < 54π at very
high peak rotation rates, the vortex-shedding process could be nearly eliminated. A
lock-on state was observed in the study by Okajima, Takata & Asanuma (1975) when
the applied frequency is that of natural vortex shedding. They examined the forces
acting on a rotationally oscillating cylinder when 40 6 R 6 6 × 103, 0.2 6 αm 6 1.0
and 0.05π 6 S 6 0.3π. Investigations at comparable values of the control parame-
ters αm and S at R = 300 were also performed by Wu, Mo & Vakili (1989). They
found that the control parameters strongly affect the fluid forces acting on the cylinder.
Vortex lock-on and control of the near-wake flow were also investigated by
Tokumaru & Dimotakis (1991) and Filler, Marston & Mih (1991). An important
finding by Tokumaru & Dimotakis is that very large peak rotation rates can produce
significant reduction in drag on the cylinder. Their experiments were conducted at
the Reynolds number of R = 1.5 × 104. Filler et al. investigated the stability of the
separated shear layers for small values of αm when 250 6 R 6 1200.

To our knowledge, from a survey of existing literature, only three purely numerical
studies have been made on this problem: Lu & Sato (1996), Chou (1997) and Baek &
Sung (1998). Finite-difference simulations were carried out using primitive variables
except for the work of Chou. These studies have a common focus on when and how
the vortex shedding is synchronized with the cylinder oscillation. A fractional-step
method (see for example Kim & Moin 1985) was utilized by Lu & Sato and Baek &
Sung to analyse the vortex formation modes behind a cylinder. In the first, simulations
were made in a range 0.1 6 αm 6 3.0 and π 6 S 6 8.0π at three values of the Reynolds
number R = 200, 103, and 3× 103 whereas in the second, numerical calculations were
carried out over the range 0.11π 6 S 6 0.22π and 0.09 < αm < 0.72 at the fixed
Reynolds number R = 110; the effects of αm and S on the vortex formation were
studied, and some basic patterns of vortex shedding were identified. According to the
computed results of Lu & Sato, the large-scale vortex structures in the near wake
remain nearly the same for R = 200, 103 and 3×103 and it is found that the variation
of the fluid forces is closely related to the evolution of the vortex formation in the near
wake. Chou simulated the synchronization phenomena via an explicit time-marching
algorithm for the governing equations. In his work computed results were reported
for 200 6 R 6 103 and S ∼ 2π and 4π at moderate values of αm.

In the present paper the two-dimensional flow caused by an infinitely long circular
cylinder which is set in motion impulsively and translates with uniform velocity and
also undergoes rotational oscillation is analysed by means of an accurate mathematical
formulation. The instantaneous translation and rotation start at the same moment
and the development with time of the flow can be studied in a coordinate frame
which translates with the cylinder but does not rotate. Equations for the flow in terms
of the stream function and vorticity in boundary-layer coordinates are presented. A
perturbation series solution for small times is developed. The flow for longer times
is computed numerically using the same spectral–finite difference method as used by
Badr & Dennis (1985) for integrating the unsteady Navier–Stokes equations and the
grid size and time steps used have been carefully tested. The numerical method is
checked for small times by comparison with the results of the analytical solution.

Numerical calculations are performed for moderate values of the time in the cases
R = 500: S = π/6, π/5, π/4, π/3, 2π/5, π/2 or f/f0 = 0.833, 1.0, 1.25, 1.66, 2.0, 2.5, and
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R = 103: S = π/4, π/2 or f/f0 = 1.25, 2.5. The peak rotational rate αm for these cases
is taken to be 1. The initial flow is also determined numerically for high values of the
control parameters αm = 5π2 and S = 20π at R = 20 and good qualitative agreement
with the experimental findings of Taneda (1978) is found. For comparison purposes
the flow around a steadily rotating and translating circular cylinder is calculated for
the constant rotation rate α(t) = α = 3.5 at R = 200 and tested against existing
numerical and experimental results. Good agreement with these results is found.

The most recent numerical studies of the flow induced by the torsional oscillations
of an elliptic cylinder were made by Riley & Wybrow (1995) and D’Alessio, Dennis
& Nguyen (1999). In the first, the case of a rotationally oscillating but not translating
elliptic cylinder was considered whereas in the second the flow induced by a rotation-
ally oscillating and translating elliptic cylinder was studied. It is noted that the flow
structures in these cases are different from the present case and that some unusual and
unexpected features in the wake such as the production of two co-rotating vortices,
depending upon the forcing Strouhal number and the Reynolds number, occur in the
present case. These are not seen in the cases of flow past an elliptic cylinder but are
present in the accelerated circular cylinder case (see Badr, Dennis & Kocabiyik 1996).

2. Governing equations and method of solution
At time t = 0 the cylinder, whose axis coincides with the z-axis, starts to move

with constant speed U in the negative x-direction and at the same instant starts to
rotate about the z-axis in the counterclockwise direction with the angular velocity
α∗(τ). A frame of reference is used in which the axes translate with the cylinder but
are fixed in direction. Polar coordinates (r, θ) are taken with the origin at the centre
of the cylinder. The unsteady Navier–Stokes equations in terms of the variables (ξ, θ),
where ξ = ln (r/a), are given by Badr & Dennis (1985) in the form

e2ξ ∂ζ

∂t
=

2

R

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
− ∂ψ

∂θ

∂ζ

∂ξ
+
∂ψ

∂ξ

∂ζ

∂θ
, (2.1)

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= e2ξζ. (2.2)

Here ψ is the stream function and ζ is the (negative) scalar vorticity. These quantities
are all dimensionless as defined in Badr & Dennis (1985). The boundary conditions
necessary to obtain a solution in the region ξ > 0, 0 6 θ 6 2π are

ψ = 0,
∂ψ

∂ξ
= −α(t) at ξ = 0, (2.3a)

e−ξ
∂ψ

∂ξ
→ sin θ, e−ξ

∂ψ

∂θ
→ cos θ as ξ →∞, (2.3b)

ζ → 0 as ξ →∞, (2.3c)

ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t), ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t). (2.3d)

The dimensional rotational velocity α∗(τ) is made dimensionless through α∗(t) =(
U/a

)
α(t). It is noted that care is necessary to satisfy properly the conditions (2.3) at

large distances; this can be achieved by employing equivalent integral conditions on
the vorticity (see Dennis & Quartapelle 1989 and Dennis & Kocabiyik 1991).
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Badr & Dennis (1985) have developed a method of solution of (2.1) and (2.2) by
means of the substitutions

ψ(ξ, θ, t) = 1
2
F0(ξ, t) +

∞∑
n=1

Fn(ξ, t) cos nθ + fn(ξ, t) sin nθ, (2.4a)

ζ(ξ, θ, t) = 1
2
G0(ξ, t) +

∞∑
n=1

Gn(ξ, t) cos nθ + gn(ξ, t) sin nθ. (2.4b)

The equations governing the functions in (2.4) are

∂2F0

∂ξ2
= e2ξG0,

∂2Fn

∂ξ2
− n2Fn = e2ξGn,

∂2fn

∂ξ2
− n2fn = e2ξgn, (2.5a, b, c)

and

e2ξ ∂G0

∂t
=

2

R

∂2G0

∂ξ2
+

∞∑
m= 1

∂

∂ξ
[m(Fmgm − fmGm)] , (2.6a)

e2ξ ∂Gn

∂t
=

2

R

(
∂2Gn

∂ξ2
− n2Gn

)
− 1

2
nfn

∂G0

∂ξ
+ 1

2
Sn, (2.6b)

e2ξ ∂gn

∂τ
=

2

R

(
∂2gn

∂ξ2
− n2gn

)
+ 1

2
nFn

∂G0

∂ξ
+ 1

2
Tn. (2.6c)

Here Sn and Tn are nonlinear sums

Sn =
∂F0

∂ξ
ngn +

∞∑
m= 1

[(
(m− n)Fj + kFk

) ∂gm
∂ξ
− (jfj + kfk

) ∂Gm
∂ξ

+ m

(
∂Fj

∂ξ
+
∂Fk

∂ξ

)
gm − m

(
sgn (m− n)∂fj

∂ξ
+
∂fk

∂ξ

)
Gm

]
,

Tn = −∂F0

∂ξ
nGn +

∞∑
m= 1

[(
kfk − jfj) ∂gm

∂ξ
− ((m− n)Fj − kFk) ∂Gm

∂ξ

− m

(
∂Fj

∂ξ
− ∂Fk

∂ξ

)
Gm − m

(
sgn (m− n)∂fj

∂ξ
− ∂fk

∂ξ

)
gm

]
,

where j = |m − n |, k = m + n and sgn (m − n) denotes the sign of (m − n), with
sgn (0) = 0. The boundary conditions necessary to solve the equations (2.5) and (2.6)
are, when ξ = 0

F0 = 0,
∂F0

∂ξ
= −2α(t), (2.7a)

Fn = fn =
∂Fn

∂ξ
=
∂fn

∂ξ
= 0, (2.7b)

and as ξ →∞
e−ξF0 → 0, e−ξ

∂F0

∂ξ
→ 0, G0 → 0, (2.8a)

e−ξFn, e−ξ
∂Fn

∂ξ
→ 0, Gn → 0; e−ξfn, e−ξ

∂fn

∂ξ
→ δn,1, gn → 0. (2.8b, c)
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The conditions (2.8) express the fact that the velocity components of the flow at large
distances relative to the motion of the cylinder reduce to those of a uniform stream
parallel to θ = 0. The symbol δn,1 is the Kronecker delta.

Finally, the boundary conditions on the functions Fn(ξ, t) and fn(ξ, t) are utilized to
deduce sets of global conditions, termed integral conditions, on Gn(ξ, t) and gn(ξ, t).
These conditions,∫ ∞

0

e2ξG0(ξ, t) dξ = 2α(t),

∫ ∞
0

e(2−n)ξGn(ξ, t) dξ = 0, (2.9a, b)

∫ ∞
0

e(2−n)ξgn(ξ, t) dξ = 2δn,1, (2.9c)

are employed in the solution procedure to ensure that all necessary conditions of the
problem are satisfied. The use of integral conditions can be found in the works of
Collins & Dennis (1973), Badr et al. (1995a,b, 1996), Kocabiyik (1996a,b), Kocabiyik
& Nguyen (1996), to mention a few of the various applications.

Equations (2.5) and (2.6) determine the development of the flow at some time
after the impulsive start, but in the initial stages of the motion the boundary-layer
coordinate z can be introduced by the transformation

ξ = kz, k = 2(2t/R)1/2. (2.10)

This is employed to transform all the appropriate equations together with the scalings
of variables

Fn = kF∗n , Gn =
G∗n
k
, fn = kf∗n , gn =

g∗n
k
, (2.11)

which maps the initial flow onto the scale of the boundary-layer thickness. This change
of variables removes the singularity in the vorticity at t = 0 due to the impulsive start.
We emphasize that although boundary-layer coordinates are utilized, the full Navier–
Stokes equations are to be solved and not the simplified boundary-layer equations.
The governing equations and the boundary and integral conditions (2.5)–(2.9) are first
transformed by means of (2.10) and (2.11) and the initial solution at t = 0 is obtained
following the work by Badr & Dennis (1985). This initial solution is given by

ζ∗(z, θ, 0) =
2√
π

(a0 + 2 sin θ)e−z
2

, (2.12)

ψ∗(z, θ, 0) = −a0

[
z(1− erf z) +

1

π
(1− e−z

2

)

]
+ 2

[
z erf z − 1√

π
(1− e−z

2

)

]
sin θ,

(2.13)
where a0 is a constant, defined by a0 = α(0).

From the initial expressions (2.12) and (2.13) we may now build up a perturbation
solution in powers of t following Badr & Dennis (1985). The stream function and
vorticity are expanded by using double power series in k and t:

ψ∗(z, θ, t) =

∞∑
m= 0

∞∑
n= 0

ψ∗mn(z, θ) kmtn, ζ∗(z, θ, t) =

∞∑
m= 0

∞∑
n= 0

ζ∗mn(z, θ) kmtn. (2.14a, b)

The rotational velocity α(t) is also expanded in the form

α(t) =

∞∑
n= 0

ant
n. (2.15)
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The process of derivation of ψ∗mn(z, θ), ζ∗mn(z, θ) follows very closely the procedures
described by Badr & Dennis (1985) and the differential equations and boundary
conditions satisfied by them are easily found. Each of them can be expressed as
a finite set of Fourier components in the coordinate θ with coefficients which are
functions of the variable z. The series (2.14) are thus expressed in periodic terms
in θ with coefficients depending on z, t and k. On expansion in powers of t and k
and equating to zero each coefficient of kmtn, we get the conditions which the Fourier
components must satisfy. As a result of determining four composite functions ζ∗mn(z, θ)
in the series (2.14), we obtain an expression for the vorticity of the form

ζ∗(z, θ, t) ∼ ζ∗00 + tζ∗01 + k
(
ζ∗10 + O(t)

)
+ k2

(
ζ∗20 + O(t)

)
, (2.16)

which is valid for small t and large R. For our present purpose we shall only give
the expression obtained for the surface vorticity. The expression (2.16) obtained by
analytical means gives sufficient information to check the numerical solutions which
are obtained by numerical integration of (2.5) and (2.6) subject to the conditions (2.7)
and (2.9). In particular, we find for the surface vorticity

ζ∗(0, θ, t) ∼ (4π−1/2 + k − 1
4
π−1/2k2) sin θ + 4π−1/2t

[(
a1 − 4

3
π−1a0 cos θ

)
+ (1 + 4

3
π−1) sin 2θ

]
. (2.17)

In theory it is possible to determine analytical solutions for each ζ∗mn and ψ∗mn satisfying
the required boundary conditions. Exact solutions can be obtained for a few functions
but they rapidly increase in complexity when n > 2 for each m and coefficients of the
higher-order terms must be found by numerical methods. In the present work terms
up to and including t4, kt3, k2t2 and k3t in (2.14a, b) are considered. Although this
approach has been used by several authors, some of which include Collins & Dennis
(1973), Badr & Dennis (1985), Badr et al. (1995a, 1996), Kocabiyik (1996a, b), there
was no attempt to determine the range of convergence of the series (2.14). We now
proceed to clarify this point. Since each solution ζ∗mn is continuous and vanishes at
infinity, ζ∗mn must be bounded in the entire flow region 0 6 z < ∞, 0 6 θ 6 2π. It can
be shown that ζ∗(z, θ, t) is uniformly bounded by M/[(1− t)(1− k)] for 0 6 t < 1 and
0 6 k < 1 where M = max {ζ∗mn : m, n = 0, 1, 2, ...}. A similar argument holds also for
ψ∗(z, θ, t). Thus the power series expansions (2.14a, b) are valid in the range 0 6 t < 1
and 0 6 k. It may be noted that k = 2(2t/R)1/2 gives the greatest lower bound of R
as 8 when k < 1 for 0 6 t < 1.

3. Numerical integration procedure
In order to calculate the flow for any Reynolds number and large enough time, a

numerical method is used which is similar to that given by Badr & Dennis (1985). The
solution is started in the boundary-layer variables by integrating (2.5) and (2.6) using
(2.13) and (2.14) as initial conditions and (2.7) and (2.9) as boundary conditions. The
use of the initial solutions (2.12) and (2.13) is essential for obtaining accurate results
at small time. The use of the potential flow solution as an initial condition at t = 0
has been frequently adopted by many researchers; however this will lead to inaccurate
results following the start of the fluid motion. The effect of such inaccuracy on the
large-time results is not known. An implicit method of Crank–Nicolson type is used
to integrate the governing equations in time following the work by Badr & Dennis
(1985) and a given approximation is obtained by truncating the series (2.4a, b). In
the present calculations the maximum number of terms used in the series (2.4a, b) is
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(a) (b) (c)

Figure 1. Comparison of computed ((a) present, (b) Chen et al. 1993) and experimental
((c) Coutanceau & Menard (1985)) instantaneous streamlines in the case of steadily rotating
and translating cylinder for R = 200, α = 3.25 when t = 2.0.

N = 30. Checks were made for each R at several typical values of t to ensure that N
was large enough. This was done by increasing N and observing that the solution did
not change appreciably. A similar check was made by Badr et al. (1995b, p. 226) and
the results found in the present case were essentially very similar and need not be
given. The solution procedure requires knowledge of the surface vorticity distribution.
The integral conditions (2.9) are used to calculate the values of functions Gn and gn on
the cylinder surface (ξ = 0) from which the required surface vorticity distribution can
be obtained at every time step. In the work of Badr & Dennis (1985) this was done
by writing the integral as a quadrature formula which gives slow convergence at each
time step. In the present study the surface vorticity was evaluated using the procedure
given by Collins & Dennis (1973, pp. 111–112) which is similar to the influence matrix
technique in one-dimensional problems (see for example Daube 1992).

Because of the impulsive start, small time steps are needed to get past the singularity
at t = 0. For the cases of finite R considered the integrations were all started by
taking 10 time steps ∆t = 10−4. The time step was then increased to ∆t = 10−3 for
the next 10 steps and then to ∆t = 10−2 for the next 10. Finally ∆t = 0.025 was taken
for the rest of the solution. The grid size in the z-direction was taken as ∆z = 0.05
and the maximum value of z was zM = 8. The values of grid sizes were to some
extent chosen to be comparable with those used by Badr & Dennis (1985), since
these were found to be satisfactory and were checked carefully. A few comparable
checks on different grids were made at one or two values of t during the present
calculations. The solutions obtained by fully numerical means are compared with
the results obtained using expansions in powers of t and good agreement is found
between the results. Moreover, this scheme was tested against the documented steadily
rotating and translating case; the tests indicate that the solutions are quite accurate.

4. Results and discussion
Before presenting the numerical results we first perform some accuracy checks on

our numerical scheme. To do this, computations were carried out for the steadily
rotating and translating case (α(t) = α) when R = 200, α = 3.5. The parameter values
chosen allow comparison with the experimental results of Coutanceau & Menard
(1985). The time development of the flow for this case at t = 2 is displayed in figure 1
and excellent agreement of our computed streamlines with previous experimental
(Coutanceau & Menard 1985) and numerical (Chen et al. 1993) results is obtained.
Moreover, our numerical procedure at small times has been tested against the results
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(a)

(b)

(c)

Figure 2. (a) Comparison of instantaneous streamlines with Taneda’s (1978) flow visualizations for
R = 20, S = 20π and αm = 5π2 when t = 0.5. (b, c) Time-averaged flow field over one period of
oscillation for R = 20, S = 20π and αm = 5π2 at (b) t = 1.0 and (c) t = 1.5.

of the analytical solution; these tests indicate that the numerical results are quite
accurate for small values of t. The drag and lift coefficients are computed using the
formulae

CD =
2

R

∫ 2π

0

(
ζ − ∂ζ

∂ξ

)
ξ= 0

sin θ dθ, (4.1)

CL = − 2

R

∫ 2π

0

(
ζ − ∂ζ

∂ξ

)
ξ= 0

cos θ dθ. (4.2)

We point out that at t = 0 both CD and CL are infinite in magnitude due to the
fact that the cylinder experiences infinite acceleration at that time and then decreases
rapidly. For this reason CD and CL are plotted for t > 0.

The flow around a circular cylinder performing rotational oscillations about its
axis in a uniform flow was investigated by Taneda (1978) at Reynolds numbers in the
range 30 6 R 6 300 and forcing Strouhal numbers between 0 and 55π. He showed
that the vortex shedding process as well as the reversed flow region behind the cylinder
could be nearly eliminated at very high oscillation frequencies. The streamline pattern
for the start-up flow is plotted in the case of R = 20 when S = 20π and αm = 5π2

when t = 0.5 and compared with the streamlines patterns of Taneda’s experimental
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work at comparable values of R and control parameters in figure 2(a). This case is
rather like the potential flow case because no vortex sheds away from the cylinder
and the flow pattern indeed resembles that of the potential flow except in the very
small region near the cylinder. In figure 2(b, c) the calculated time-averaged flow field
over one period of oscillation is plotted in the case of R = 20, S = 20π and αm = 5π2

starting at t = 1.0 and t = 1.5, respectively. In these figures the flow is time-averaged
over a complete period of oscillation of the cylinder up to the time at which it returns
to the same position. These figures clearly indicate that flow separation and vortex
shedding appear to have been completely inhibited for this high forcing Strouhal
number range as predicted by Taneda and it may be noted that the calculated mean
flows in figure 2(b, c) are almost steady state.

Numerical calculations are also given at R = 500 and R = 103. In the case of
R = 500, the problem is solved for the six values of the forcing Strouhal number
of π/6, π/5, π/4, π/3, 2π/5 and π/2. On the other hand, the case of R = 103 is only
investigated for S = π/4 and π/2. The peak rotation rate αm for these cases is taken
as 1.0. The results are presented below in the form of time variation of the streamline
patterns as well as the variations of the drag and lift coefficients with time.

4.1. Streamline patterns and force coefficients at R = 500 and αm = 1.0

In figure 3 results for the case of S = π/6 are shown for selected values of t
between t = 24 and t = 36. The chosen interval covers the third complete oscillation
cycle following the start of the fluid motion. During the first half of the third cycle
the rotational oscillation is in the counterclockwise sense. Close to the cylinder,
figure 3(a), a clockwise vortex exists and is convected downstream with the aid of
the counterclockwise rotation of the cylinder. This continues until figure 3(c) and a
small counterclockwise circulation vortex in the upper right half of the cylinder is
formed after figure 3(c). The reverse circulation region formed by the vortex and the
flow from either side is negligible. When the clockwise rotation starts, the aforestated
procedure is repeated in the opposite direction. The repetitive nature of the flow field
in the near wake can be observed from mirror resemblance between the diagrams
3(a, d), 3(b, e), 3(c, f), 3(d, g). Figures 3(a) and 3(g) are almost the same, showing
the periodic variation of the flow field at t = 24 and t = 36, respectively. Here we
are dealing with a rotational oscillation frequency which is lower than the Kármán
shedding frequency (f/f0 = 0.833) and the vortices in the near wake are simply
the result of one vortex shedding in each half-cycle. They are shed at the Kármán
shedding frequency; a clockwise vortex is formed on the lower half of the cylinder
and a counterclockwise vortex is formed on the upper half. Thus non-synchronized
vortex patterns are formed in the near wake.

The force coefficients are shown in figure 4 for S = π/6 where CDF and CLF are
the coefficients due to the friction and CDP and CLP are the coefficients due to the
pressure. The contribution of frictional forces to the total drag and lift coefficients
CD and CL is relatively small. From a numerical point of view, it may be noted that
the oscillating amplitude should be large enough to avoid a long transition period
and to facilitate periodic vortex formation; it typically takes only one cycle to reach a
periodic pattern. This may be expected since the flow oscillations in this case exhibit
low frequency and a relatively large amplitude. In addition, the CD curve oscillates
twice as many times as the CL curve does after the initial transition period. This fact
reflects the alternate vortex shedding in each cycle.

As the oscillating frequency increases to S = π/5 and S = π/4, synchronized
vortex modes (not shown here due to the limitations of space) become locked
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(a) (b)

(c) (d)

(e) ( f )

(g)

Figure 3. Instantaneous streamlines of the flow for R = 500: S = π/6, αm = 1.0: (a) t = 24,
(b) t = 26, (c) t = 28, (d) t = 30, (e) t = 32, (f) t = 34, (g) t = 36.

to the cylinder oscillations. At S = π/5 two opposite-sign vortices are shed from
either side of the cylinder in each half-cycle. At S = π/4, however, in the near
wake, only one vortex is shed in a half-cycle. At a higher oscillation frequency,
when S = π/3, vortex shedding is also synchronized with the cylinder oscillation
and the rotational oscillation frequency is higher than the Kármán vortex shedding
frequency (f/f0 = 1.66). The instantaneous streamlines are displayed during the
counterclockwise half-period in figure 5 (a–d). As the cylinder starts to rotate in the
counterclockwise direction, a reactive clockwise circulation is generated in the region
45◦ < θ < 90◦, figure 5(b). The accelerated flow during the last half-period and the
flow due to the cylinder rotation confront each other in the region 0 < θ < 90◦.
As the angular velocity increases, the circulation becomes larger and is convected
downstream with the aid of accelerated flow at the lower half of the cylinder. This
continues until the rotation is reversed. After this reversal (see figure 5e), the flow in
the lower half of the cylinder is repeated by generating counterclockwise circulation in
the region 270◦ < θ < 360◦. The vortex formation in this case is similar to the classical
Kármán vortex street with a regular spacing. We note that as the forcing Strouhal
number increases from π/5 to π/3 the horizontal and vertical spacings between
vortices are observed to be inversely proportional to the forcing Strouhal number.
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Figure 4. Variation of (a) the drag coefficients: CDF , CDP and CD and (b) the lift coefficients: CLF ,
CLP and CL, with t at R = 500, S = π/6 and αm = 1.0.

Figures 6–8 show the variations of the force coefficients at S = π/5, π/4 and π/3.
The lift coefficients vary at the cylinder oscillation frequency, and the drag coefficients
oscillate at twice the cylinder oscillation frequency. The values of CD tend to be
smaller as the forcing Strouhal number increases (or as amplitude becomes smaller)
whereas CL increases. This is probably due to the fact that, when the cylinder begins
to oscillate, it takes some time before boundary-layer separation occurs on the side
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(a) (b)
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(e) ( f )
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Figure 5. Instantaneous streamlines of the flow for R = 500: S = π/3, αm = 1.0: (a) t = 24,
(b) t = 26, (c) t = 28, (d) t = 30, (e) t = 32, (f) t = 34, (g) t = 36.

of the cylinder astern of the oscillation direction. Therefore, in the small-amplitude
and high-frequency case, the region of the next cycle of oscillation is entered before
enough separation takes place. This reduces the drag forces.

In the near wake, the vortex patterns at S = 2π/5 (not shown here) and S = π/2
(shown in figure 9) are also synchronized with the cylinder oscillation and the vortex
modes are similar to those for lower frequencies (S = π/6, π/5), showing markedly
periodic behaviour. In the case of S = π/2, the computations were carried out over
eight complete cycles. During the first two cycles when 0 < t < 8 (not shown here), the
usual formations and detachments of upper (clockwise) and lower (counterclockwise)
vortex pairs take place. Figure 9 (a–e) shows five snapshots of the flow covering
the third complete cycle. In this cycle the near-wake structure is quite different from
the ones obtained in the previous two cycles. During the interval 9 6 t 6 10 the
clockwise vortex pair which was shed in the second cycle joins with the clockwise
vortex pair formed in the third cycle: the vortices of the same sign coalescence. With
the increase of time this double vortex pair becomes weak and moves downstream (see
figure 9e, f) and fades away at t = 13.0 (figure 9g). In the time interval 13 < t < 24
no co-rotating vortex pair appears but in the seventh cycle (figure 9h–l) we once
again observe shedding of a double counterclockwise vortex pair from the lower half
of the cylinder and the movement of it in the downstream direction. This co-rotating
vortex pair fades away at the end of the seventh cycle and a new double clockwise
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Figure 6. Variation of the drag and lift coefficients, CD and CL with t at R = 500,
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Figure 7. As figure 6 but for S = π/4.

vortex pair appears at the beginning of the eighth cycle (see figure 9m). It seems that
this phenomenon will be repeated with vortex pairs that are shed from the upper and
lower half of the cylinder, when the flow has settled down to a truly periodic state.

It may be noted that this unusual feature in the wake, the presence of two co-
rotating vortices, was first reported by Lu & Sato (1996) in the same type of flow
(see figure 16, p. 844). In their work this phenomenon was observed in a different
parameter range from ours: (R = 103: f/f0 = 3.0 and α = 3.0) by investigating the
equi-vorticity lines during only one cycle of oscillation. Thus, unlike the present work,
a periodic repetition of the phenomenon was not observed. The fact that there is a
periodic motion of this kind is one of the essentially new contributions of our work.

This kind of vortex pair interaction in the near wake might be due to the rotary
motion of the cylinder which tends to attract the two vortex pairs shedding away from
the cylinder to each other, thus slowing down their convection further downstream.



The flow induced by a rotationally oscillating and translating circular cylinder 137

4

3

2

1

0

–1

–2

–3

–4
0 6 12 30 42

t

CL

CD

24 3618

Figure 8. As figure 6 but for S = π/3.

By inspecting the lower forcing frequency cases we see that the near-wake region is
much more periodic and organized.

The calculated values of CD and CL in the case of S = π/2 are plotted in figure 10.
The lift coefficient oscillates at the same frequency as the cylinder oscillation as
expected. At this forcing Strouhal number we observe an interesting behaviour of the
drag coefficient: the CD curve oscillates at twice the frequency of cylinder oscillation
until t = 32; beyond this time it oscillates at the same frequency as the cylinder
oscillation. This behaviour might be due to the coalescence of vortices of the same
sign.

4.2. Streamline patterns and force coefficients at R = 103 and αm = 1.0

To discuss the effect of the Reynolds number on the vortex patterns and force
coefficients, the flow is calculated at S = π/4 and π/2. At S = π/4 the vortices in the
near wake (not shown here) are simply the result of one vortex shedding each half-
cycle. This is the classical mode of single-vortex-shedding in each half-cycle leading
to the formation of the Kármán street and the vortices in the near wake are shed at
the rate of oscillation experienced by the cylinder. Thus for the value of the forcing
frequency S = π/4, we find that the main features of the near wake are nearly the
same for R = 500 and R = 103.

In the case of S = π/2, the computations are carried out over four complete cycles.
Figure 11 illustrates the flow for this case at four instants in time during the fourth
cycle of oscillation. Comparison of these figures with the corresponding ones in the
case of R = 500 indicates that the near wake does not involve adjacent co-rotating
vortex coalescence in the case of R = 103 unlike the case of R = 500. Thus the
Reynolds number seems to have more influence on the flow structures at higher
values of S than at lower values of S .

The calculated values of CD and CL are plotted in figures 12 and 13 for the cases of
S = π/4 and S = π/2. In each case the contribution of frictional forces to the drag CD
and lift CL coefficients is relatively small and the main contribution comes from the
pressure forces since in this type of flow at moderate and high Reynolds numbers the
viscous flow effect is limited to the thin boundary layer and the subsequent narrow
near-wake region. It is noted that in figure 13(b) the lift coefficient CL becomes
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Figure 9. For caption see facing page.

periodic for t > 12 but the time-averaged lift is non-zero; there appears to be a
‘preferred direction’ for the lift which is in some way associated with the vortex
shedding from the cylinder, i.e. there will be a loss of lift as vortices are shed from
the cylinder. Thus there may be a lack of balance in the situation as the cylinder
rotates one way or the other depending on how the vortices are shed, which in turn
presumably depends on the asymmetry of the initial motion.

5. Conclusions
An implicit time-marching scheme was utilized to analyse the vortex formation

modes behind a cylinder as well as the fluid forces acting on a cylinder, where
the uniformly translating cylinder was in time-dependent rotational oscillation. The
numerical scheme was verified by applying it to study the special case of a steadily
rotating and translating circular cylinder. Furthermore, the simulations of the start-
up flow at a low Reynolds number are consistent with Taneda’s (1978) experimental
results.

Calculations are performed in a different parameter range from those used in
previous numerical studies. Two different Reynolds numbers are considered. In the
case of R = 500 the results are obtained in a range of forcing Strouhal number
π/6 6 S 6 π/2 or oscillating frequencies 0.833 6 f/f0 6 2.5 when the peak-rotational
rate is α = 1.0. An interesting phenomenon occurs for sufficiently large time when
R = 500 and S = π/2: the two co-rotating vortex pairs are shed away from the
cylinder to form a double co-rotating vortex pair which slows down their convection
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Figure 9. Instantaneous streamlines of the flow for R = 500: S = π/2, αm = 1.0: (a) t = 8, (b) t = 9,
(c) t = 10, (d) t = 11, (e) t = 12, (f) t = 12.5, (g) t = 13,(h) t = 24, (i) t = 25, (j) t = 26, (k) t = 27,
(l) t = 28, (m) t = 29, (n) t = 30, (o) t = 31, (p) t = 32.

further downstream. This seems to delay the development of the periodic flow pattern
in the near wake.

When f is lower than the natural shedding frequency, an initial clockwise vortex
is formed on the lower half of the cylinder when the cylinder is rotated in the
counterclockwise direction and a counterclockwise vortex is formed on the upper half
when the clockwise rotation starts. This leads to a non-synchronized vortex formation
mode and as a result of this the lift and drag are affected by the frequencies f0 and
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Figure 10. Variation of the drag and lift coefficients, CD and CL with t at R = 500,
S = π/2 and αm = 1.0.
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Figure 11. Instantaneous streamlines of the flow for R = 103: S = π/2, αm = 1.0: (a) t = 12,
(b) t = 13, (c) t = 14, (d) t = 16.

2f0, respectively. A salient vortex formation mode change was observed when the
forcing oscillation frequency f approximates the natural shedding frequency, namely
a synchronized vortex mode is found to be locked to the cylinder oscillations. When
f is higher than the Kármán vortex-shedding frequency (f0 = 0.1) an initial reactive
clockwise vortex is formed on the upper half of the cylinder when the cylinder is
rotated in the counterclockwise direction and a counterclockwise vortex is formed on
the lower half when the clockwise rotation starts. This leads to a synchronized vortex
mode as the vortices in the near wake are shed at the same frequency as the cylinder
oscillation.

In addition, the lift coefficients vary at the cylinder oscillation frequency, and the
drag coefficients oscillate at twice the cylinder oscillation frequency. In the case of
S = π/2 or f/f0 = 2.5 we observe an interesting behaviour of the drag coefficient:
the CD curve oscillates at twice the frequency of the cylinder oscillation until t = 32;
beyond this time it oscillates at the same frequency as that of the cylinder oscillation.
We believe that this behaviour is due to coalescence of the vortices of the same sign
observed in the flow patterns when S = π/2. This kind of behaviour in the drag
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Figure 12. Variation of (a) the drag coefficients, CD and (b) the lift coefficients, CL, with t at
R = 103, S = π/4.

coefficient in this type of flow has not been observed previously and seems to make
a quite new contribution to the fluid mechanics of the problem. It is also observed
that as the forcing oscillation frequency increases from S = π/6 to S = π/2 the value
of the drag coefficient decreases by about 50%. Drag reduction was also obtained
by Tokumaru & Dimotakis (1991), among other phenomena, when both the forcing
frequency and the peak-rotational rate are somehow higher than usual.

In the case of R = 103 results are obtained at S = π/4 and π/2 or f/f0 = 1.25 and
2.5 when the peak-rotational rate is α = 1.0. For S = π/4, the near-wake structure is
nearly the same as in the case of R = 500. It is found that for S = π/2 the near wake
does not involve adjacent co-rotating vortex coalescence and as a result of this the
usual behaviour of the drag coefficient is observed unlike when R = 500. Thus the
Reynolds number seems to have more influence on the structures and the fluid forces
at higher values of S than at lower values, which is in contrast with the findings of
Lu & Sato (1996). In their work it is reported that the large-scale vortex structures
in the near wake remain nearly the same for R = 200, 103 and 3× 103.
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In summary, therefore, we have observed some new fluid mechanical phenomena in
this type of flow, particularly with regard to the periodicity of the double co-rotating
vortex shedding and the behaviour of the drag coefficient for certain values of R
and S . We have also confirmed instances of drag reduction with increasing Strouhal
number found by others but have found more influence of the Reynolds number of
the fluid structures than that found in previous work.
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